Proppant transport in hydraulic fractures has been studied by numerous authors in the oil and gas industry, however, very little research has been conducted to evaluate proppant transport in horizontal wellbores and through perforation clusters prior to fracture entrance. With the extensive use of water and slickwater systems in the stimulation of unconventional reservoirs, an understanding of how proppant behaves as it is being transported by these fluids in horizontal wellbores and between perforation clusters would be beneficial.

This paper presents the results of an experimental investigation of proppant distribution among perforation clusters in a horizontal wellbore. The work considers the settling nature of proppants in the wellbore and the amount of proppant exiting a given set of perforations. The experiments show that proppant distribution between perforation clusters is not even, and the main causes of the uneven distribution are variable flow velocity and the associated proppant type and size. The results also indicate that in most commonly used sand proppant systems (100 mesh, 40/70 mesh, and 20/40 mesh), significant amounts of sand are left in the wellbore even above calculated critical velocity values.

You can access this article if you purchase or spend a download.