In field development programs where large variations in reservoir and completion parameters exist, the evaluation of reservoir performance to determine the optimal completion strategy can be a challenging task. This paper presents findings from a recent integrated cross-discipline analysis of a pilot program performed in the Bakken and Three Forks Formations (Williston Basin, North Dakota) to evaluate the impact of petrophysical and geomechanical properties on hydraulic fracture lengths, reservoir connectivity, well performance and well spacing.

Microseismic, geological, geomechanical, completions, engineering and production data were integrated in single and multi‐well modeling approaches to provide an objective method to evaluate and compare well performance. Results and conclusions from various disciplines were validated by integrating operational observations with the modeling. The application of the proposed workflow allows one to (1) understand and evaluate the effect of fracturing parameters (length/conductivity) on well performance, (2) characterize reservoir and fracture properties using hydraulic fracture pressure and production history matching techniques (3) relate fracture parameters to reservoir, geology and mechanical properties and, (4) provide a methodology to understand key drivers controlling the development strategy of an asset.

You can access this article if you purchase or spend a download.