A synthesis of treatment design parameters, treatment procedures in the field, quality control, and analysis of created fracture parameters is essential to improve and optimize hydraulic fracture treatments in a particular field. This paper provides a step-by-step approach to treatment design optimization that combines laboratory, field and analytical efforts. The laboratory program includes measurements of porosity, absolute and relative permeability, capillary pressure, elastic moduli, matrix permeability and proppant bed sensitivity to fluid (reservoir and treatment) all at simulated in-situ conditions and appropriate petrographic study. The field test program involves in-situ stress measurements (mini-fracs in the pay and surrounding formations), fracture orientation determination and transient pressure tests. Successful implementation of the optimized design is then carried out by monitoring of flow rate and bottom hole pressure during the job and change of design parameters as necessary to tailor the fracture geometry. This must be coordinated with a quality control program for both the equipment and materials used in the job. A brief review of the state-of-the-art of transient pressure analyses of fractured wells is also included in the paper to inform the practicing engineer of the advantages, disadvantages and limitations of each technique. Finally, a field example is presented that illustrates the step-by-step approach. Designed and created fracture parameters are critically compared to demonstrate the effectiveness of the procedure and show how such information can be used to further improve results.

We gratefully acknowledge the Gas Research Institute (GRI) and the U.S. Department of Energy, which have funded some of the work presented here.

You can access this article if you purchase or spend a download.