Production of oil from organic shale reservoirs is a function of porosity, hydrocarbon saturation, pore pressure, matrix permeability, and hydraulic fracture surface area plus fracture conductivity. Hydraulic fracture surface area, porosity, saturations and pore pressure dominate initial production rates. Matrix permeability becomes increasingly important in sustaining production later in time. Permeability measurements to oil from organic shale core samples are not commercially available today. However, permeability to oil is believed to be a function of pore throat size, wettability, and water saturation, the same as a conventional reservoir. This work investigates pore size, wettability, and expelled hydrocarbon volumes using log and core-based nuclear magnetic resonance data from the Eagle Ford Shale focused on the comprehensive evaluation of one well. Comparisons with core porosity measurements, scanning electron microscope images (SEM) and mercury injection capillary pressure tests (MICP) are compared with the nuclear magnetic resonance (NMR) interpretation for calibration and validation. The NMR T2 distribution is partitioned into regions of bound and producible free fluid.

Two types of pore systems are present in the Eagle Ford Shale; kerogen-hosted (OM) and inter/intra particle (IP). Bore hole logs indicate the upper Eagle Ford Shale is dominated by IP porosity, and the lower Eagle Ford Shale is dominated by OM porosity. Core NMR indicates OM pores are hydrocarbon wet while IP pores have mixed wettability. Core pore fluids are not representative of in-situ conditions as the lighter portion of the hydrocarbons have been expelled during core recovery. Comparison between log and core measured NMR allows the quantification of the expelled hydrocarbon - those zones with the "best" producibility. Understanding which portion of a shale reservoir contains producible fluids impacts target zone selection.

You can access this article if you purchase or spend a download.