We utilize several lines of evidence to argue that slow slip on pre-existing fractures and faults is an important deformation mechanism contributing to the effectiveness of slick-water hydraulic fracturing for stimulating production in extremely low permeability shale gas reservoirs. First, we carried out rate and state friction experiments in the laboratory using shale samples from three different formations with a large range of clay content. These experiements indicated that slip on faults in shales comprised of less than about 30% clay is expected to propagate unstably, thus generating conventional microseismic events. In contrast, in formations containing more than about 30% clay are expected to slip slowly. Second, we illustrate through modeling that slip induced by high fluid pressure on faults that are poorly oriented for slip in the current stress field is expected to be slow, principally because slip cannot occur faster than fluid pressure propagates along the fault plane. Because slow fault slip does not generate high frequency seismic waves, conventional microseismic monitoring does not routinely detect what appears to be a critical process during stimulation. Thus, microseismic events are expected to give only a generalized picture of where pressurization is occurring in a shale gas reservoir during stimulation which helps explain why microseismicity does not appear to correlate with relative productivity. We review observations of long-period-long-duration seismic events that appear to be generated by slow slip on mis-oriented fault planes during stimulation of the Barnett shale. Prediction of how pre-existing faults and fractures shear in response to hydraulic stimulation can help optimize field operations and improve recovery.

You can access this article if you purchase or spend a download.