Abstract

Reserves estimation in an unconventional-reservoir setting is a daunting task because of geologic uncertainty, complex flow patterns evolving in a long stimulated-horizontal well, among other variables. To tackle this complex problem, we present a reserves-evaluation workflow that couples the traditional decline-curve analysis with a probabilistic forecasting frame. The stretched-exponential production decline model (SEPD) underpins the production behavior. Our recovery appraisal workflow has two different applications: forecasting probabilistic future performance of wells that have production history and new wells without production data. For the new field case, numerical model runs are made in accord with the statistical design of experiments for a range of design variables pertinent to the field of interest. In contrast, for the producing wells the early-time data often need adjustments owing to restimulation, installation of artificial-lift, etc. to focus on the decline trend. Thereafter, production data of either new or existing wells are grouped in accord with initial rates to obtain common SEPD parameters for similar wells. After determining the distribution of model parameters using well grouping, the methodology establishes a probabilistic forecast for the individual wells.

This paper presents a probabilistic performance forecasting methodology in unconventional reservoirs for wells with and without production history. Unlike other probabilistic forecasting tools, grouping wells with similar production character allows estimation of self-consistent SEPD parameters and alleviates the burden of having to define uncertainties associated with reservoir and well-completion parameters.

You can access this article if you purchase or spend a download.