Abstract
This paper presents a case history on new sandstone acidizing technology using a nonhydrofluoric formulation to successfully treat a high carbonaceous sandstone formation. The improved understanding of the chemical complications of hydrofluoric (HF) on dirty sandstones led to the design of a nonhydrofluoric treatment on the high carbonate content (dirty) sandstone formation.
Previous treatments using various formulations of HF acid failed to remove the high skin associated with several wells in this formation. A new approach was taken to identify the damage mechanism and evaluate damage removal options based on the formation mineralogy. This approach analyzed the potential chemistry risks associated with using HF type treatments in the presence of particular mineralogies and temperatures.
The new approach also used logging and reservoir modeling technology to forecast the estimated production profile of the complex multilayered formation. Candidate wells were identified by comparing the forecast production profile potentials to the surveyed production profiles based on production logging (PLT) of the prescreening candidates. The final treatment candidate was then selected for the trial of the new treatment formulation. The treatment was specifically tailored based on the identified mineralogy and encompassed the damage prevention strategies. The result was a 40% increase in oil production for the well, but a 2-fold to 10-fold increase for the treated zone, depending on pretreatment production assumptions.