Abstract

A laboratory investigation was carried out to experimentally determine the extent of the salt precipitation effects on the petrophysical properties of deep saline aquifer during CO2 storage. This was performed on selected core samples using laboratory core flooding process. The petrophysical properties (Porosity, Permeability) of the core sample were measured before core flooding using Helium Porosimetry and Scanning Electron Microscopy (SEM) to determine the morphology of the core samples. The core samples were saturated with brines of different salinities (5, 15, 25, wt% NaCl) and core flooding process was conducted at a simulated reservoir pressure of 1,000 psig, temperature of 45°C, with varying injection rates of 1.0, 1.5, 2.0, 2.5 and 3.0 ml/min respectively. The obtained results indicated that the porosity and permeability decreased drastically as salinities increases, noticeably because the higher concentration of brine resulted in higher amounts of salt precipitation. Porosity reduction ranged between 0.75% to 6% with increasing brine salinity while permeability impairment ranged from 10% to 70% of the original permeability. The SEM images of the core samples after the flooding showed that salt precipitation not only plugged the pore spaces of the core matrix but also showed significant precipitation around the rock grains thereby showing an aggregation of the salts. This clearly proved that the reduction in the capacity of the rock is associated with salt precipitation in the pore spaces as well as the pore throats. Higher injection rates induced higher salt precipitation which caused reduction in porosity and permeability. This is attributed to the fact that; the higher injection of CO2 vaporizes the formation brine more significantly and thereby increasing brine concentration by removing the water content and enhancing precipitation of salt. These findings provide meaningful understanding and evaluation of the extent of salt precipitation on CO2 injectivity in saline reservoirs. The insight gained could be useful in simulation models to design better injectivity scenarios and mitigation techniques

You can access this article if you purchase or spend a download.