Electric submersible pump (ESP) systems use thrust bearings in the seal section to handle the thrust generated by the pump stages. Thrust bearings are subjected to harsh operating conditions, including high loads, poor oil circulation, and motor oil viscosity degradation. A less-recognized issue is gas becoming centrifugally trapped under the thrust runner. The gas may be present because of incomplete purging of air during filling, permeation of well gas into the motor oil, or gradual gasification of motor oil at high temperatures. Because thrust bearings are such critical components, it is of interest to increase their reliability, which in turn will increase ESP life.

A novel gas purging system (GPS) was designed to alleviate stressors on thrust bearings, including gas accumulation, viscosity deterioration and gasification at high temperature, and low working oil volume. GPS circulates oil along with any gas that accumulates under the thrust runner up to a quiet separation chamber. Degassed oil circulates back to the thrust bearing, while accumulated gas eventually purges to the wellbore through relief valves on subsequent on/off cycles. GPS also improves viscosity and reduces gasification by cooling the oil, and it provides a greater working volume of thrust bearing oil to reduce the effects of oil deterioration.

This paper details the GPS design principles as well as the optimization of the different design parameters that affect its performance conducted via computational fluid dynamics (CFD). Observations captured on a test fixture built using the final configuration are also presented, validating the intended functionality.

You can access this article if you purchase or spend a download.