Abstract
In the past ten years, hydraulic fracturing technology and strategies have made major improvements in the operational efficiency and economic performance of shale well completions. Much of this advancement was derived in the past three years as a response to the global downturn in oil and gas commodity pricing. Mature shale plays across the United States have a surplus inventory of horizontal wells employing highly inefficient completions styles. Amid the low oil pricing environment, operators in the Bakken and Eagle Ford were capable of revitalizing these prior generation wells with great success through re-fracturing programs. In many cases, production of these re-fractured wells rivaled the production of newly drilled and completed shale wells both in terms of initial production post re-fracture as well as extended interval cumulative production. These re-fracturing programs allowed producers to achieve tremendous gains in production while minimizing drilling activity. Although re-fracturing began as a highly economical method to improve production during a time of depressed oil pricing, it is still being used today to improve the production of additional wells recognized as top-tier candidates.
By developing a specific set of criteria to select wells for re-fracturing, these programs can be successfully employed in the Appalachian Basin to improve the economics of gas wells, mitigating the effects of highly discounted natural gas pricing. After the explanation of well candidacy, an economic sensitivity analysis was implemented to illustrate the impacts a strong re-fracturing program could make for operators in the Northeast through a comparison of public data showing production and total reserves for both in and out-of-basin re-fracturing programs. Additionally, while this paper focuses on re-fracturing as it relates to shale formations it also includes information as to how re-fracturing relates to conventional formations.
After looking at the incremental economics of re-fracturing programs implemented in shale plays across the United States and in-basin data, the impacts of gas well re-completion can be fully quantified and understood through the application of probabilistic modeling. Additionally, this modeling further delineates re-completion candidacy by identifying which wells pose higher risks in economic metrics.
Very little information has been published regarding the impacts a re-fracturing program could have in the Appalachian Basin. As the field matures, the topic of re-completions will become increasingly important, and this analysis will allow operators to have a greater understanding of the impacts of refracturing shale gas wells in the Northeast.