Abstract
Large volume slick-water stimulations have become the de facto standard for completion strategy in the Upper Devonian, Marcellus, and Utica/Point Pleasant. Current completion optimization work has focused on optimizing stage spacing, sand loading, and injection rate which have shown increases in well productivity. One commonly overlooked variable in the design equation is stimulation fluid chemistry and rock/fluid interaction. Friction reducers, the primary additive of a slickwater system, have become a commodity with many service companies providing similar systems. Premium slickwater systems in the Marcellus are generally characterized by the ability to tolerate high percentages of produced water.
We have developed an alternative approach to the design of stimulation fluid chemistry. This approach consists of creating a comprehensive laboratory workflow justification for multiple fluid combinations with consideration for specific thermal maturity windows. The laboratory workflow includes proprietary rock/ fluid interaction tests that insure formation compatibility, lever imbibition/displacement production mechanisms, insure compatibility of fluid components inclusive of available water sources, and insure optimization of the fluid based on stimulation intensity (Budney 2017) objectives. After extensive testing, a new stimulation fluid chemistry has been developed that offers several advantages verified by laboratory testing. The new stimulation fluid chemistry consists of a multifunctional additive with the following characteristics: salt tolerant, viscosifying, formation stabilizing, wettability enhancing friction reducer technology paired with a compatible scale inhibitor and biocide. This new stimulation fluid chemistry was field tested against an incumbent fluid chemistry provided by the stimulation service company. Well production data from the first multiple well experiment demonstrated the new stimulation fluid chemistry resulted in significantly improved well performance. A second multi-well experiment in a different area was conducted and proved the well performance improvement associated with the new stimulation fluid chemistry was repeatable. Economic analyses on wells from both field experiments demonstrate an excellent return on investment with the new stimulation fluid chemistry.
This study highlights the importance of justifying stimulation fluid chemistry utilizing a laboratory workflow. The laboratory workflow incorporates rock/fluid interaction testing to maximize the imbibition/displacement production mechanism. The laboratory workflow must also prove that the stimulation fluid chemistry satisfies the stimulation intensity objectives of high rate, high sand concentration, and reduced fluid volumes while enabling reliable field execution.