Closed perforations and damaged sections are two great challenges in the petroleum industry. Several reasons may cause these problems. Few of them depend on the type of formation and wellbore while others come from drilling, completion and stimulation activates before production process. Production rate and pressure drop may lead significantly to these two problems; therefore, production management sometimes plays great role in controlling them. Millions of dollars are spent annually for the remedial process of these two problems. Therefore the prediction of them is considered of great importance as an attempt to control them or reduce their negative impact on wellbore deliverability.

This paper introduces a new technique to predict closed perforations and damaged sections problems using pressure transient analysis. Pressure behaviors and flow regimes in the vicinity of horizontal wellbores are affected by the existence of the closed perforated zones and the formation sections where the resistance to reservoir fluid flow toward the wellbore is maximized. This resistance occurs because of the damaged permeability and high skin factor. Analytical models for predicting these problems and determining how many zones of the horizontal well that are considerably affected by them have been introduced in this study. These models have been derived based on the assumption that wellbore can be divided into multi-subsequent segments of producing and non-producing intervals. Producing intervals represent free flowing zones where there is no problem and both formation and wellbore are assumed to be clean. Non-producing intervals represent zones where both formation and wellbore’s perforations are closed or damaged.

The effective length of horizontal well where the perforated zones and the formation sections can not be considered problematic and the damaged length where both of them are significantly closed and damaged can be calculated. The numbers of the damaged zones can be calculated also. In addition, the locations of the damaged sections or closed perforated zones can be determined. Type-curve matching technique and the analytical models can be used for this purpose.

You can access this article if you purchase or spend a download.