This paper presents a study of the relationship between permeability and effective stress in tight petroleum reservoir formations. Specifically, a quantitative method is developed to describe the correlation between permeability and effective stress, a method based on the original in situ reservoir effective stress rather than on decreased effective stress during development. The experimental results show that the relationship between intrinsic permeability and effective stress in reservoirs in general follows a quadratic polynomial functional form, found to best capture how effective stress influences formation permeability. In addition, this experimental study reveals that changes in formation permeability, caused by both elastic and plastic deformation, are permanent and irreversible. Related pore-deformation tests using electronic microscope scanning and constant-rate mercury injection techniques show that while stress variation generally has small impact on rock porosity, the size and shape of pore throats have a significant impact on permeability-stress sensitivity. Based on the test results and theoretical analyses, we believe that there exists a cone of pressure depression in the area near production within such stress-sensitive tight reservoirs, leading to a low-permeability zone, and that well production will decrease under the influence of stress sensitivity.

You can access this article if you purchase or spend a download.