Thousands of wells are hydraulically fractured in the Appalachian Basin each year with little clear understanding of what the resulting fracture actually looks like. A number of variables exist in the subsurface including natural fractures, permeability variations, in-situ stresses, faults, etc. that can influence the ultimate dimensions and orientation of the created fracture. It is necessary that the stimulation design team understand the impacts that these features can have on the path a hydraulic fracture takes in the subsurface. The created fracture and its conductivity ultimately dictate a well's productivity and drainage area.

This paper will outline the basics of how in-situ stresses affect the orientation of propagating hydraulic fractures and how some geological characteristics can impact the process. Some discussion will be presented on the current technologies being used to understand fracture geometry. These include microseismic imaging and tiltmeter surveys.

You can access this article if you purchase or spend a download.