Miscible/Immiscible carbon dioxide injection is considered as one of the most effective technology to improve oil recovery from complicated formations. Main factor restraining wide application of this technology is its dependence on natural CO2 sources, transportation of CO2, breakthrough of CO2 to production wells, corrosion of well and field equipment, safety and environmental problems etc. However, in-situ carbon dioxide generation technology is eliminating CO2 negative impact and strong control of the process.

The EOR mechanism of proposal technology is described as follows: acid and exothermic chemical reaction function relieve deep reservoir damage, micronucleus systems formed possess abnormal reological properties allowing to improve water flooding efficiency, CO2 as a super-critical fluid decreases oil viscosity and gas form CO2 reaches such place in the formation where not many solvents can enter to, foamed gas-liquid system creates additional resistance for water injected after gas-liquid system, surfactant formed decreases interfacial tension in oil-water contact, and CO2 solved in oil increases oil volume what affects on displacement of residual oil.

Lab research shows that proposed technology can decrease injection pressure of damaged core by 11.7MPa, gas generation amount and oil volume increasing rate increases with temperature and system concentration increasing, oil volume increasing rate and oil viscosity reducing rate increasing with oil viscosity increasing. Under the conditions of 60 degrees Celsius, 10MPa, 2010mPa.s, it can increase oil volume by 25%, reduce oil viscosity by 52.7%, improve recovery efficiency by 7.6%~14.2%.

Field pilot tests were conducted in seven injection wells in China Bohai offshore oilfield in 2009~2010. All the wells present significant effect of decreasing injection pressure and increasing injection rate, average decreasing pressure by 3.2MPa, average increasing injection rate of single well by 22118m3, cumulative increasing injection rate by 154827m3, cumulative increasing oil of around production wells by 29000m3. Field pilot tests shows that proposed technology can be applied in a wide range of geological conditions, and be the key to recovering huge amount of oil from highly watered, depleted, heterogeneous and other type of so called hard-to-recover oil reserves.

You can access this article if you purchase or spend a download.