Abstract
With the depletion of light oil, heavy oil is becoming one of the most promising resources to meet future energy consumption. It is estimated that total resources of heavy oil are 3396 billion barrels worldwide. Water flooding can only achieve less than 20% of heavy oil recovery. Thermal recovery has been proven as a feasible method to recover heavy oil. But it is not suitable for thin layers and deep reservoirs due to excessive heat loss. Polymer flooding and CO2 flooding are potential EOR techniques for the heavy oil reservoirs not suitable for thermal recovery. However, polymer degradation and high costs seriously hinder its field applications. Carbon Dioxide immiscible flooding effectively recovers heavy oil thanks to several mechanisms, such as oil swelling, viscosity reduction and blow-down recovery. This paper discusses the developments in CO2 immiscible flooding at laboratory scale as well as field scale. Laboratory tests show that CO2 can significantly improve heavy oil recover by 30%. Several field cases in USA, Turkey and Trinidad are reviewed. Field experiences show that CO2 flooding is a successful EOR method for heavy oil fields. However, some issues are encountered in field applications, including early gas breakthrough, corrosion, CO2 availability and high costs.