The complex physics of the displacement processes involved in three-phase flow in porous media in the tertiary oil recovery processes is yet to be understood. Three phase relative permeability are usually calculated from two phase experimental data due to the complexity of three phase measurements and its duration, hence introducing uncertainty in the adopted models. Pore-scale laboratory studies have shown strong irreversibility in the relative permeability among the successive drainage and imbibitions cycles and its path dependency, which is called hysteresis. Understanding this phenomenon and its effect play a major role in evaluation and success of any tertiary recovery processes such as WAG EOR. Several models have been proposed to predict this mechanism, three phase zone and predict the true residual oil saturation. To better evaluate and mitigate the risks involved, the impact of many parameters used in the current predictive tools and hysteresis models should be fully understood and investigated.

In this work relative permeability hysteresis, three phase region and various involved parameters affecting the hydrocarbon recovery have been investigated. A heterogeneous sector model supported with actual SCAL data were used for the purpose of this study. The results of the study and the adopted methodology have been later compared and verified with the actual real field performance data under the same processes.

Generally the results show significant difference in term of residual oil saturation whether or not a relative permeability hysteresis modeling is employed. The study also demonstrates the necessity of fine-tuning the hysteresis model parameters to the actual SCAL data to obtain more realistic parameters to be used in prediction phase. Reservoir heterogeneity play a major role in balancing the viscous and gravity forces as well as the three phase region size to achieve higher hydrocarbon recovery.

You can access this article if you purchase or spend a download.