Conventional guar borate systems have historically been preferred for hydraulic fracturing applications because of the lower cost of the base polymer and crosslinker. Additionally, the fluid formulations can be easily tailored based on reservoir conditions and operational needs and the favorable tubular friction reducing characteristics of guar-based fluid systems makes them a desirable option for fracturing fluid systems. However, water insoluble residue resulting from guar-based systems may significantly impact the permeability of the proppant pack when flowing back and producing the well. A recently developed, nearly residue-free (RF) fluid system offers excellent cleanup properties and, as a result, has provided significantly improved production of hydrocarbons compared to typical guar-borate systems. While offering excellent performance and production, the RF fluid demonstrated significantly less friction reduction than comparable guar-based systems. This paper introduces a newly developed fluid system offering equivalent cleanup properties and performance, but with significantly enhanced friction reduction. The lower friction of the (LF)-RF system helps lower wellhead pressures to allow maintaining pump rate, adhering to the job design, to place the desired amount of proppant in the fracture.

This newly developed LF-RF fluid is a high performance fracturing fluid with improved regained conductivity and core permeability cleanup compared to typical guar-borate crosslinked systems. It is applicable within a wide variety of reservoirs, including unconventional reservoirs, and to-date has been successfully used in more than 1,100 stages since its introduction in early 2014. The LF-RF fluid system is applicable from 100 to 275°F bottomhole static temperature (BHST) and offers excellent operational versatility and proppant transport. This paper compares fluid performance and friction response of a conventional guar-borate fluid and the existing RF system with the newly developed LF-RF fracturing fluid.

You can access this article if you purchase or spend a download.