Water flooding is a frequently used technique to increase oil recovery after primary depletion. The presence of high permeability zones can have a large influence on the recovery, because they can cause early water breakthrough and trapping of by-passed oil. Smart well technology gives us the opportunity to counteract these effects by imposing an appropriate pressure or flow rate profile along the injection and production wells. In the current study we focus on water flooding with fully penetrating, smart, horizontal wells in 2 dimensional, horizontal reservoirs with simple, large-scale heterogeneities. The water flood is improved by changing the well profiles according to some simple algorithms that move flow paths away from the high permeability zone in order to delay water breakthrough. For all cases where early water breakthrough plays a role, it was possible to improve the water flooding process with these simple algorithms. For all these cases acceleration of production was possible. The increase in ultimate recovery obtained is very much dependent on total production time allowed. The shorter this time, the better the improvement in recovery will generally be. The increase in recovery obtained by applying the optimization algorithm varied between 0% - 20%. The delay in breakthrough time achieved by our optimization routine varied from 7-168 %. Our algorithms result in flow profiles that do not change in time. Both results from our own study and from literature show that time-varying flow profiles can at least further accelerate production. The general principle behind optimization in our cases was to reduce the difference in time of flight from injector to producer as much as possible.

You can access this article if you purchase or spend a download.