Cleanouts and milling make up most of the common coiled tubing (CT) operations around the globe. The objective of each is to remove debris from a wellbore, such as sand, scale, cement, or fracture plugs, to promote an unobstructed flow path for fluids. For decades, operators and service companies have focused heavily on methods to optimize removal of debris through the development of specialized tools, fluids, techniques, and predictive models. These are coupled with wellsite equipment digital acquisition systems to capture CT behavior, pump rates, and chemical additive rates; very little attention has been given to the rates of the fluid and solids being returned to surface.

The composition and quality of fluids being pumped into the well are often well characterized, and the pump rate is recorded digitally to the second. By contrast, information on the fluid being returned is frequently limited to intermittent, manual surveys of the flowback tank fluid level that often go unrecorded. Fluid samples are rarely analyzed, even by inexact measurements, to provide feedback to the predictive model. This results in a missed opportunity to optimize the operation as well as to recognize and respond to undesirable trends and actions in real time.

This paper describes a simple digital acquisition system developed and implemented in the field to digitally record, plot, and monitor critical wellsite parameters including flowback rate, solids returns, annular velocities, and downhole Reynolds numbers. The system provides a real-time visual aid to observe the direct impact that operational decisions have on cleanout efficiency and the opportunity to correct and optimize the cleanout operation. Furthermore, the system offers the opportunity to rapidly recognize and respond to unexpected trends such as a gradual or sudden loss in return rate or a decrease of solids returns which could rapidly result in serious consequences such as a stuck-pipe situation.

You can access this article if you purchase or spend a download.