Abstract
Field A, an oil field located in Peninsular Malaysia, was completed in 2007 with an initial production of 6,000 BOPD and managed to reach a peak production of 15,000 BOPD the same year, with a water cut of 15%. Toward the end of 2014, a decrease in production was observed with an increase in water cut to 85%. Coupled with high water cut, some of the wells experienced sand production issues. Most of the wells were completed with either standalone screens or without any sand control methods. After a few years in production, the sand-producing wells were shut-in to help prevent damage to surface facilities.
Two idle oil wells, Wells 1 and 2, were identified and efforts were made to reactivate them. High costs can be associated with remedial mechanical sand control to work over a well, so a chemical consolidation treatment using solvent-based resin was identified as a less expensive solution for remedial sand control for these wells.
Chemical sand consolidation using solvent-based epoxy resin was tested in a laboratory using produced sand samples from the selected wells and showed good results. The chemical consolidation treatments for Wells 1 and 2 were designed based on these results. Before treatment was performed for either well, Well 2 was replaced with Well 3 because of a gas supply shortage, which affected total field production. In October and November 2015, Wells 1 and 3 were intervened and chemical sand consolidation was executed on both wells. After the treatment, Wells 1 and 3 were brought back on production. Sand production for Well 1 was below the threshold limit of 15 pounds per thousand barrels (pptb). However, the performance of Well 3 did not meet expectations.
This paper describes the process of treatment design and execution for the chemical sand consolidation of Wells 1 and 3 and explains the workflow used during the design stage. Coiled tubing isolation technique and bullhead treatment technique are discussed together with lessons learned from Wells 1 and 3 in terms of designing chemical sand consolidation treatments for future applications.