Coiled tubing (CT) monitoring tools are being utilized on a larger percentage of field jobs now as compared to the past. They are being used on both CT intervention and CT drilling operations. The objective of this paper is to demonstrate how a wall thickness measurement device can enhance and improve the calculations made by a CT fatigue algorithm.

Experimental work was done which shows how the wall thickness can vary depending on the pump rates, the fluid being pumped and the amount of tubing that is spooled on the reel. Reference four provides detailed information related to wall reduction in CT during pumping operations. Typically, fatigue models will utilize an estimated, nominal or minimal wall thickness to perform the fatigue calculations.

The amount of wall reduction in CT can vary greatly and as a CT string acquires fatigue, there is a chance that the estimated wall thickness may not reflect the actual wall thickness of the pipe. Recent modifications to fatigue tracking software allow the user to incorporate the real-time (or recorded) measured wall thickness into the fatigue calculations. This paper will discuss the experimental work, the modifications to the model, and case histories in which the wall thickness measurement device was used.

Calculating the CT fatigue using the measured wall thickness will increase the accuracy of the CT fatigue profile. This will allow CT service companies to operate at an increased efficiency. Operating companies will also benefit from this technology because there will be fewer fatigue failures at the well site due to the increased accuracy in the fatigue calculations.

You can access this article if you purchase or spend a download.