When CO2 is injected in deep saline aquifers on the scale of gigatonnes, pressure buildup in the aquifer during injection will be a critical issue. Because fracturing, fault activation and leakage of brine along pathways such as abandoned wells require a threshold pressure (Nicot et al., 2009), operators and regulators will be concerned with a critical contour of overpressure (CoP). The extent of this contour varies depending on the target aquifer properties (porosity, permeability etc.) and the geology (presence of faults, abandoned wells etc.). The extent also depends on relative permeability, and from the three-region injection model (Burton et al., 2008), we derive analytical expressions for a specific contour of overpressure at any given time. The risk of pressure-induced leakage from the aquifer can therefore be understood in terms of phase mobilities and speeds of saturation fronts. This provides a quick tool for estimating pressure profiles.

Seven different relative permeability curves (Bennion and Bachu, 2005) and their effect on the CoPs in each of the three regions have been studied. The relative permeability curve which gives the maximum two-phase region mobility (MBL) gives the lowest pressure buildup (specific CoP is closest to the injector). Thus characterizing relative permeability will be an important consideration for the practical implementation of CO2 storage projects. For smaller values of critical CoP which lie in the brine region, the location of the critical CoP, and hence the risk due to pressure buildup, are time-invariant and independent of relative permeability. This result significantly reduces the uncertainty in predicting these contours of overpressure.

You can access this article if you purchase or spend a download.