This paper proposes a new methodology using condensation model to evaluate the early-period SAGD by interpreting the temperature falloff data in injector or producer obtained from fiber optics or thermal couples after the wells are shut-in. Based on the non-condensation model proposed before, the condensation model also assumes a circular hot-zone shape since in the early stage of SAGD operation, and characterize the system as composed of a steam-zone of steam temperature, a cold-zone of reservoir temperature and a transition-zone in between as the initial temperature distribution. Besides, the condensation model incorporates the effect of steam condensation on the condensation-front. The movement of steam condensation-front is calculated to account for the steam-zone shrinkage. Sensitivity analysis over this models indicates that the sizes of steam-zone, transition-zone and the observing location directly affect the temperature behavior at observation point. Synthetic case study shows that the temperature falloffs from condensation model and from simulation are in good agreement and suggests that condensation model can be used to estimate the chamber size at the early stage of SAGD. As is known, it is important to obtain an even steam chamber distribution along the horizontal wellbore to shorten the ramp-up time so that maximized economics can be achieved. In reality, the reservoir heterogeneity, the wellbore undulation and the operation condition make the steam chamber conformance impossible. Because of the ready-to-use temperature data and the semi-analytic solution, the condensation model proposed in this paper can provide quick and reliable estimation of the steam chamber size to help the engineers to monitor and optimize the chamber development thereafter.

You can access this article if you purchase or spend a download.