Abstract
With the decline of conventional oil production, developing and producing heavy oil resources efficiently is becoming more important. The Liaohe Heavy Oil Field steam operation is unique – it started with cyclic steam stimulation (CSS) operation that transitioned into a continuous steam-assisted gravity drainage (SAGD) operation. With respect to oil production in China, this field is considered critical for heavy oil production and technology development. Cyclic steam injection was initially done through vertical wells. This had the benefit that it provided a good start-up of depletion chambers in the reservoir. These chambers then grew under gravity drainage after continuous steam injection (through the vertical wells) and continuous production through a set of horizontal wells was started. Controlled and deliberate transition from CSS to a gravity drainage process with the objective of optimizing energy intensity (GJ injected per unit volume oil produced) with control enabled through production and thermocouple data is a smart field operation which we refer to as a Reservoir Production Machine (RPM). In this paper, as a first step to understand the operation and its impact on the reservoir, we have history matched the CSS operation based on the injection and production data from field. The use of vertical steam injection wells (formerly the CSS wells) in combination with horizontal production wells operated in a SAGD mode of operation is explored. The history-matched model can be used to develop automated RPM technologies to optimize not only energy intensity but also emissions intensity.