Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
- Paper Number
NARROW
Format
Subjects
Date
Availability
1-2 of 2
Diankui Fu
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the SPE Annual Technical Conference and Exhibition, September 30–October 2, 2019
Paper Number: SPE-195876-MS
Abstract
Using a single universal spacer surfactant to clean a wide variety of oil-based mud (OBM) is considered the "Holy Grail" of spacer fluid system. Specialty chemical and service companies have devoted intense research and vast resources to develop the ideal spacer surfactant, but their efforts have not led to a singlesurfactant solution due to uniquely different drilling mud properties. It is no surprise to experts in the field that surfactant selection is extremely mud specific. For instance, one surfactant may effectively clean certain types of OBM, but fail in another mud from a different location that has the same density and base fluid. As a result, service companies have numerous surfactants in their portfolios, further complicating logistics and operations. This paper presents the discovery of a high-performance universal biomicromaterial, which can significantly improve the cleaning performance of any surfactants/spacer fluids to remove most, if not, all types of drilling mud. The innovative bio-micromaterial is an eco-friendly byproduct from another industry. Successful cleaning of the drilling mud was demonstrated by standard rotor testing with different OBM samples from across North America, and the percentage of mud removal was determined. Furthermore, the ability of the innovative micromaterial to efficiently clean the mud was verified by measuring the strength of bonding between the set cement and the metal casing that had been cleaned by the spacer fluid after drilling mud contamination. Basically, this new procedure simulates downhole fluid displacement by the intermediate spacer fluid, which is ahead of the cement slurry, displacing the mud. Stability and mixability were also studied to determine the effect of the bio-micromaterial addition to the spacer fluid. Finally, a fundamental scientific study using thermogravimetric analysis and imaging techniques was done to characterize the material and determine its thermal stability. For the first time, newly discovered, high-performance, universal cleaning micromaterial is presented to enhance the OBM removal of any spacer fluid design. This groundbreaking research has successfully demonstrated the unconventional advanced material to be a universal cleaning, single-additive spacer admixture for a wide variety of drilling mud from various regions across North America. To our knowledge, based on extensive literature search, this is the first report about the application of this natural waste product in wellbore cleaning fluids like the spacer.
Proceedings Papers
Roderick Pernites, Jason Brady, Felipe Padilla, Jordan Clark, Gladyss Ramos, Jaron Callahan, Ricardo Garzon, Raymond Sama, Mark Embrey, Diankui Fu, David Johnson, Nicolas Richey
Publisher: Society of Petroleum Engineers (SPE)
Paper presented at the SPE Annual Technical Conference and Exhibition, September 30–October 2, 2019
Paper Number: SPE-196059-MS
Abstract
Increasing horizontals, narrowing annular gaps, more stringent cement regulations, fracturing with more stages and high pumping rates on top of more cost-efficient well completion are raising demand for lightweight cements, which are designed to prevent damage and lost circulation problems in weaker formations. However, many alternative lightweight materials that are more cost effective than glass beads, which are known to provide superior strength, are increasing waiting-on-cement time, thus delaying further drilling. They also struggle to deliver the required compressive strengths. This paper presents (1) recent case histories of successful field applications of new stronger non-beaded lightweight cement, (2) extensive laboratory data of various field designs with new lightweight cement versus premium commercial lightweight cements, and (3) detailed scientific study explaining how the innovative lightweight cement has provided superior fluid stability and set cement mechanical properties. The successful field trials occurred in the Permian basin for all four wells on the same pad. About 400 bbl of the new lightweight cement at 10.5 lbm/gal density was delivered to complete each cementing job with 134°F BHST and 6,000-ft measured depth. The four wells were completed with the new lightweight cement, remarkably having no glass beads despite the extremely low density. Unlike the previous job designed with commercial lightweight cement, the new cement has provided far greater compressive strength and has shown faster (18 to 24 hr) strength development. During placement, the new lightweight cement slurry has demonstrated exceptional stability with fewer additives than the previous design, thus simplifying field operations. Multiple laboratory test data at different cement densities (10.5 to 14.5 lbm/gal) for other regions confirmed the enhanced performance of the new lightweight cement in both slurry form and set cement over conventional lightweight technologies. Detailed scientific study via X- ray Diffraction (XRD) explained how the new lightweight cement provided superior set cement performance. The novelty of this work and invaluable contribution to the industry is the first successful field application of a newly developed micromaterial that provided a lighter, stronger, low-permeability, non-beaded cement that enhances wellbore integrity and provides better zonal isolation. New findings from XRD and Scanning Electron Microscopy (SEM) imaging techniques about the new micromaterial lightweight additive may provide insights for improving the performance of traditional materials.