Tapping into an unconventional reservoir such as naturally fractured tight carbonate or basement has become more common in the industry. Open natural fractures, when present are the major contributor to production flow in such formation. Therefore, a comprehensive understanding of fracture properties including aperture, intensity, and permeability is required to identify the productive fractures and optimize production.

In this paper, we discuss the first application of the latest Logging-While Drilling (LWD) high-resolution laterolog resistivity image in combination with LWD multi-pole sonic to provide comprehensive fracture characterization in Pre-Talang Akar Formation tight carbonate reservoir, in the offshore North West Java Basin, Indonesia. The methodology involved identification of borehole breakouts, natural or drilling-induced fractures, faults and vugs from the high-resolution LWD image data, which were then interpreted further to provide the fracture attributes and the secondary porosity distributions from each of the identified features. The Stoneley measurement from LWD multi-pole sonic log enabled the analysis of the fracture system producibility using the sonic fracture technique. The characterization of fractures and faults (open/closed) from the integration of these two independent methods were complemented by the triple combo measurements, caliper, and drilling loss data, as well as sonic compressional and shear data.

This methodology has successfully managed to differentiate open fracture zones and closed fracture zones along with their computed fracture properties. The open fracture zones were characterized by a cluster of conductive fractures with large fracture aperture and fracture porosity value. These fractures were also associated with positive fracture indication from the sonic data, decrease in density logs, shallow - deep resistivity log separation and drilling loss occurrence. Whereas, closed fracture zones were characterized with minor fracture dip development. It also showed negative open fracture indication from sonic data, flat density log response and overlaying resistivity log response with no drilling loss occurrence.

The case study in this paper shows excellent LWD data quality and fracture characterization result, on par with wireline conveyed data that were commonly used to quantify fracture attributes. The results provide invaluable information for volumetric calculation, well completion and production planning in this area.

You can access this article if you purchase or spend a download.