The common viewpoint or paradigm of the far-field hydraulic fracture geometry is changing. Data sets compiled over the last decade are incompatible with the conventional picture of a single, bi-wing, planar hydraulic fracture. These data sets include (1) recovered cores, (2) minebacks, (3) microseismicity, (4) overcores and borehole video, (5) treatment pressure response, and (6) surface tilts, in conjunction with advancements in laboratory simulations, studies of natural hydraulic fracture analogues, and improvements in numerical simulations. The single, planar, far-field fracture paradigm finds its roots and development in early theory and simplified laboratory studies that were predisposed to single, planar fracture geometry. Replacing the old paradigm is a new perspective that includes a strong potential for creating multiple, far-field fractures. The implications of multiple, far-field fracturing has resulted in adjustments to completion and stimulation strategies to address and affect the overall fracture geometry.

You can access this article if you purchase or spend a download.