Conventional ICDs were invented for long horizontal wells to promote a more uniform inflow profile. Later, AICDs were developed, which utilize viscosity contrast between fluids to impose a larger hydraulic resistance in sections with inflow of undesired fluids, like gas and water. However, these AICD technologies cannot be used to choke back inflow of water in reservoirs where oil and water have similar viscosities, and they also tend to impose large pressure drops even for single-phase oil at high flow rates. The objective of the work presented here has therefore been to develop an inflow control technology that removes these limitations.

The resulting Density Activated Recovery (DAR™) technology utilizes difference in fluid density rather than viscosity contrast to control fluids downhole. It is a fully autonomous, binary system that is either fully open or closed, where "closed" means that it only allows a small pilot flow. More specifically, it can be considered a "dual ICD" with flow through a large port when open, and a small port when "closed". The flow capacity and choking efficiency are therefore fully defined by the diameters of these two ports. Furthermore, it can close and reopen at any pre-determined water and gas fractions, that are completely insensitive to flow rate, viscosity and Reynolds number. This makes it universally applicable to control any wellbore fluid along the entire reservoir section.

After successful prototype testing in 2018, the DAR technology has now undergone a comprehensive full-scale system-qualification program including a final flow performance test where the system was tested at 240 bar and 90ºC with saturated 0.8 cP oil. The tests demonstrated up to seven times higher flow capacity with the density-based DAR technology compared with viscosity-dependent AICD technologies. The system successfully and repeatedly closed and reopened for both gas and water. As oil and water had similar viscosities, the tests also proved how this technology can be used to stop undesired inflow of water in light-oil reservoirs.

Being insensitive to flow rate, the DAR system is also insensitive to local variations in pressure and productivity along the reservoir section, which reduces the negative consequences of geological uncertainty and allows the same design to be used at every location in the well. It can also be configured to ensure complete mud removal during well cleanup and can even stop inflow of water in gas wells, where the undesired fluid has higher viscosity than the desired fluid. More importantly, this technology can deliver automated reservoir management to a level where it influences how wells are drilled and fields are developed. Accelerated oil production and the reduced need for reinjection of gas/water will also reduce the associated greenhouse gas (GHG) emissions considerably.

You can access this article if you purchase or spend a download.