Recent industry analysis based on publicly available production data of most unconventional basins in the US have consistently highlighted the underperformance of child wells as compared to parent wells, although completion practices have continuously evolved. Industry publications have suggested that average productivity degradation of child wells can be up to 29% for some Delaware Basin operators. In some cases, the detrimental effects of parent-child relationships have also been observed on the parent wells after the stimulation of the child wells. In such an environment it is important to develop completion strategies to mitigate the negative effects of this parent-child relationship. In the Delaware Basin, the negative parent-child effect was successfully mitigated on two different zipper pads, with parent wells as close as 500 ft away from the zippered child wells. On the first pad, one parent well was completed and six months later two child wells were zippered with the closest child 1,000 ft away from the parent and pumped with far-field diversion. On the second pad, one parent well was completed and four months later three child wells were zippered with the closest child well 500 ft away from parent and far-field diversion pumped on the two closest child wells.

The stimulation treatment design was carefully designed to include far-field diverters on the stages near parent wells. Job size and far-field diverter quantity were determined using an integrated hydraulic fracture simulation software with an advanced particle transport model. Contingency scenarios were also prepared to facilitate real-time changes required when or if abnormal behavior was observed during the execution. The zipper sequence was also planned to help establish a stress-shadow effect near the parent well to further mitigate detrimental parent-child interactions. To monitor execution in real time and evaluate interactions between wells, high-frequency pressure gauges were installed on all observation wells including parent and child wells.

The completion design and far-field diversion treatment worked as planned for the first pad, with no significant well interference pressure signature observed on the monitoring well. For the second pad, the parent well saw pressure increases up to 700 psi during the treatment of a stage midway along the lateral of the closest child well which was completed with far-field diverter. Contingency plans were successfully executed, and no significant pressure increase was observed on the remainder of the lateral. Early production results indicate that the negative impacts of parent-child interactions were successfully mitigated on both pads, with the production of the parent wells quickly returned to their observed trends prior to child wells stimulation. Child wells production, when normalized both by lateral length and stimulation size, was on par with that of the parent well.

You can access this article if you purchase or spend a download.