The act of planning a well is a collaborative effort taking disparate data from various groups and synthesizing it into one overarching program. Each operator follows its own well design process, but common to each operator is the fact that wells not designed wholly in series, but rather have many parallel sections, with a set of decision gates and countless data interdependencies. The goal of this paper is to detail the successful development and implementation of an integrated planning platform within a National Oil Company.

The individual components of well design process are not performed in a vacuum. The various inputs / outputs from one application affect the inputs/ outputs of applications both upstream and downstream of it, along the design process. This is addressed by facilitating integration and analysis of data input / output from each component of the planning process, synthesizing it, and performing automated system-integrity and overall conformity checks between the interdependent components. Any changes to an individual design component that affect other areas must be flagged, notifying the appropriate parties. Defining and automating workflows, mapping data interdependencies within the workflows, and creating a system of data governance are also keys to building an efficient planning platform. Similar to a navigation program which is able to determine an optimal driving route by considering various dynamic and static data points, the implemented platform uses a data-adaptive approach to well planning. Using this method, it takes unstructured data processes, decision trees, data integration protocols, and automates them while also permitting users to collaborate on well planning and design, allowing the standardization of processes. Operators are able to embed their particular methods of well design into the software platform and thus ensure that all of their company meet the specific requirements. Key to the effectiveness and longevity of this type of platform is a neutral data repository. Allowing data to be free of any singular data protocol ensures that although individual applications may revised, replaced, or put into competition with one another, the format of the data produced as well as ingested by these applications stays constant. Data will remain mapped, both in terms of overall process workflow and interdependencies. This paper is beneficial to any operator wishing to gain insight in developing a forward thinking of a digital strategy for well planning and design. However, the use of these types of methods and development of a similarly integrated platform an operator can standardize processes, enforce and ensure data governance, as well as gain efficiency in overall planning time.

You can access this article if you purchase or spend a download.