Abstract
Waterflooding of heavy oil reservoirs is commonly used to enhance their productivity. However, preferential pathways are quickly developed in the reservoir due to the significant difference in viscosity between water and heavy oil, and hence, the oil is trapped. Here, we propose a platform for designing ultra-low IFT solutions for reducing the capillary pressure and mobilizing the heavy oil.
In this study, mixtures of organic acids and bases were formulated. Three different formulations were tested: (i) Ionic liquid (IL) formulation where bulk acid (4-dodecylbenzene sulfonic acid) and base (Tetra-N-butylammonium hydroxide) were mixed using general protocols for ILs synthesis, (ii) Acid-Base solution (ABs) where the acid (4-dodecylbenzene sulfonic acid) and base (Tetra-N-butylammonium hydroxide) were mixed in low weight fractions directly in water, and (iii) Acid Salt-Base solution (ASBs) where the acid salt (sodium dodecylbenzene sulfonate, SDBS) was used instead of the acid. All the formulations have a 1:1 stoichiometric ratio of acid and base. Salinity scans were conducted to determine the optimum salinity that gives the lowest IFT for each formulation. Corefloods were conducted in hydrophilic and hydrophobic sandpacks to evaluate the three formulations at their optimum salinities for post-waterflood heavy oil recovery.
The IL and ABs formulation are acidic solutions with pH around 3. The ASBs formulation is highly basic with a pH around 12. Non of the formulations salted out below 14 wt% of NaCl. While conventional surfactant, SDBS, precipitated at salt concnetration less than 2 wt% of NaCl. The formulation solutions (1 wt%) have different optimum salinities: 2.5 wt% NaCl for ASBs, 3 wt% NaCl for IL and AB. Although IL and AB have the same composition and molar ratio of the components, their performances are completely different, indicating different intermolecular interactions in both formulations. Corefloods were conducted using sandpack saturated with Luseland heavy oil (~15000 cP) and at fixed Darcy velocity of 12 ft/day. A slug of 1 PV of each formulation was injected after waterflooding for 5 PV and followed by 5 PV post-waterflooding. In the hydrophilic sandpacks, IL and AB formulation produced an oil bank, consisting mainly of W/O emulsion, with oil recovery that is 1.7 times what was recovered by 11 PV of waterflooding solely. Majority of the oil was recovered in the 2 PV of waterflood following the IL slug. ASBs formulations produced O/W emulsions with prolonged recovery over 5 PV waterflooding after the ASB slug. The recovery factor for ASBs was 1.6 times that recovered for 11 PV of waterflooding only. In the hydrophobic sandpacks, The ASB formulation slightly increased the recovery factor compared to only waterflooding. While for IL and AB formulation, the recovery factor decreased.
This work presented a novel platform for tuning the recovery factor and the timescale of recovery of heavy oil with a variable emulsion type from O/W to W/O depending on the intermolecular interactions in the system. The results demonstrate that the designed low IFT solutions can effectively reduce the capillary force and are attractive for field application.