One of the main challenges in Steam Assisted Gravity Drainage (SAGD) wells is steam breakthrough in producer wells, which can result in inefficient bitumen recovery due to high Steam Oil Ratio (SOR). Flow Control Devices (FCDs), also known as Inflow Control Devices (ICDs), have been developed for several years to balance the oil inflow along the horizontal wells and consequently delay or mitigate the unwanted fluid breakthrough. The newest generation of FCDs is a truly Autonomous Inflow Control Valve (AICV) which can optimize oil production, reduce SOR and significantly restrict the inflow of unwanted fluids such as water, steam and Non-condensable Gases (NCGs).

This novel AICV design was tested in a full-scale high temperature laboratory flow loop that replicates the downhole operating temperatures, fluid conditions and flow rates of a SAGD production well. The full-scale tests were conducted to determine how the AICV could optimize SAGD production by restricting the production of NCGs and steam and favor the production of oil.

Both single-phase and multi-phase flow performance behavior of the AICV are presented. Furthermore, the results are compared with a conventional passive ICD to illustrate the significant potential of the AICV in enhancing oil production, total recovery and overall project economics.

The results show that the production of lower temperature, relatively high viscosity oil can be increased by approximately 90% for the situation of deploying AICVs. Additionally, gas production is dramatically reduced from approximately 1200 L/h for the ICD, to 180 L/h with the AICV, corresponding to an 85% reduction. These results show that a considerable reduction in steam use is possible by using the AICVs, which would result in reduced energy usage for steam generation, reduced water usage, and reduced greenhouse gas emissions for each barrel of oil produced, thus improving the economics of SAGD projects.

You can access this article if you purchase or spend a download.