Eastern Siberia is characterized by the extremely complex geological structure. The main factors include multiple faults, trappean and salt tectonics, the complex structure of the upper part of the section (0–1200 m) and its high-velocity characteristic (5000–6000 m/s), the high degree of rock transformation by secondary processes, low formation temperatures (10–30°C), the mixed fluid composition (gas, oil and water), and low net thicknesses (5–7 m) of productive layers. The fields of the region are among the most complex ones in the world according to the BP Company's statistics. New seismic and geologic model based on complex analyses of core, well logs, well tests, seismic and electromagnetic data allowed the Gazpromneft-GEO company to drill a series of successful wells.

Gazpromneft-GEO, LLC.holds three oil and gas exploration and production licenses within the Ignyalinsky, Vakunaisky and Tympuchikansky (Chona field) subsurface blocks (Russia, Eastern Siberia, Irkutsk Region and Republic of Sakha (Yakutia)). The area of the blocks is 6,855 sq.km, 3,050 sq.km of which are covered by the 3D seismic and high-density electric prospecting (Fig. 1). 70 exploration wells were drilled. The geological oil reserves of the Chona field are about 500 Mt. Nonetheless, the level of study of the blocks is extremely irregular, despite such significant reserves. To transfer from the exploration stage to production the capital-intensive scope of exploration is required, which expands the exploration program in time and can influence the final economic profitability of the project. The optimization of drilling costs by minimization of drilling wells and the efficiency of their drilling is the key purpose of the project.

The work was carried out within the frames of scientific research and field works at the Gazpromneft-GEO, LLC. fields in Eastern Siberia. The high-density full-azimuth ground-based seismic using the UniQ technology was performed in Russia for the first time. The electric exploration with the near-field time-domain electromagnetic method was carried out along the same lines for the first time in Russia as well. This allowed to form the high-density cube of geoelectric properties. Model based on the wells (Facies model, Petrophysics model) and field geophysical data (3D seismic survey, 3D electric exploration, gravimetric survey, magnetic survey) complexation was made. The use of the approach allows to reduce the number of wells required for exploration of fields by 40%.

You can access this article if you purchase or spend a download.