Abstract

Offshore field started on operation to produce crude oil with 27 API° as sweet crude and sour crude with 32 API° since 1960. Large number of wells in offshore field revealed undesirable phenomena related to well integrity issues as potentially sustained pressure on several casing strings. Well integrity management emphasis on preventing well problems related to well safety and integrity such as casing leak, Sustained Casing Pressure (SCP), downhole safety valve (DHSV) failures. The direct impact from integrity management added great value in terms of decreasing in operating down time, improvement in well control and safety aspects, and reducing unplanned repair intervention. In addition, the loss of well integrity can cause major accidents with a severe risk to the personnel, asset and environment.

The paper aims to illustrate a methodology results on applying effective well integrity monitoring techniques. A focus was made to improve monitoring well integrity through reviewing wellhead surface parameters, annulus sections pressure and downhole condition. In addition, the subject wells should be kept under close monitoring at a safe operable with an integral condition. Non-integral wells are common in aged wells, which are becoming a challenging issue to restore its integrity and operability especially for such aged completion. As a part of well integrity review, the concerns had been identified, investigated, and subsequently mitigations actions are recommended to restore the well integrity. Currently, it is confirmed that 25 oil producers with casing leak problems, which resulted to be converted from conventional completion to a slim hole with limited future accessblity. Based on lab reusltes and logging interpretations, it is indicated that the root cause of casing leaks is due to corrosive water flow from shallow aquifer formation. Therefore, an immediate remedial action is required to improve well construction.

A successful worked over well with integrity issue as a casing leak was repaired by cement squeeze into across the corroded casing interval, which enhanced well integrity and restore well productivity. The resulted showed that tubing leaks encountered with well integrity due to sustained casing pressure. Therefore, the pressure on production casing can cause severe failure with catastrophic damage. The results also illustrated that a water flow through poor cement is a major cause of sustained casing pressure in the outer casing strings. The cause of pressure on production casing is generally easier to diagnose than that pressure on one of the outer casing strings. Challenges, methodology, work schedule, risk assessment, lesson learned and findings are included in this paper. The effective well integrity management resulted on great deal of benefits, which are related to securing wells, well operability, cost saving, and sustained maximum production target.

You can access this article if you purchase or spend a download.