Abstract
Kuwait Oil Company is pursuing fast track technology deployment in its fields to meet the strategic target of production. The horizontal wells provide good mean to exploit the reservoir through increased reservoir contact but it brings some inherent problems in optimizing production and low cost well intervention. To address these inherent challenges, the deployment of inflow control device (ICD) has become a normal trend of completion in horizontal wells.
The completion of horizontal wells with ICDs helps in optimizing production but information of inflow contribution from each section qualitatively and quantitatively is still a challenge. In this perspective, KOC has deployed intelligent chemical inflow tracer technology combined with On/Off ICDs below an ESP in a horizontal well located in its northern field to assess the inflow performance of the production. The horizontal well was drilled through a heterogeneous reservoir, which was compartmentalized with swell packers and completed with On/Off ICDs. In these types of wells, traditional production logs are considered risky and expensive due to the limitations of using a small-diameter coil tubing, which must fit through the Y-tool on the ESP. This small diameter coil tubing will go into helical buckling before reaching the toe of the well resulting in an incomplete log for the well. In some cases, the wells are lacking Y-Tool facility, which practically does not allow production logging in the well.
In such cases, the intelligent chemical inflow tracers are used to provide a qualitative assessment of the clean-up phase of production, quantitative inflow information from each zone, and to identify the section producing water along the horizontal well. The use of intelligent tracers overcame the intervention challenges by installing intelligent downhole chemical sensors in pup-joint carriers next to the ICD joints in each compartment from heel to toe to meet monitoring objectives of Kuwait Oil Company. Fluid samples collected from the surface flow lines were analyzed for unique chemical tracer signatures and interpreted the corresponding tracer signals. This has resulted into identification of quality of fluid flowing from each section concomitant with its quantification. In addition, the pilot results have increased the reservoir understanding that leads to optimum ICD designs for future wells in the same reservoir.
This paper discusses the first well installation of its kind in Kuwait, the methodology for selecting the technology, the deployment in the well, and the interpretation of results of water and oil tracers obtained during different monitoring campaigns through fluid sampling.