Low salinity waterflooding (LSWF), versus high salinity waterflooding (HSWF) has been the focus of significant research at various centres around the world, yet there is still considerable debate over the exact mechanism that provides incremental oil recovery. The use of the LSWF technique is not widespread in the United Kingdom continental shelf (UKCS). However, it has been announced that the Clair Ridge development will deploy low salinity waterflooding (LSWF) in secondary mode from the start of field life, and a number of companies are currently assessing the applicability of the technique through high level screening and core flooding. Forecasting the potential oil recovery under LSWF is heavily influenced by the simulation technique that is used. Presently the most widely discussed approach is the use of a weighting table with relative permeabilities representing the high and low salinity cases. As the grid block falls below threshold salinity, the simulator utilises the weighting table to assign an interpolated value of salinity. This value of salinity is utilised to represent a change in wettability. While this approach approximates the net effect of LSWF, it does not capture the oil/rock/brine interaction. This study examines the modelling approach to LSWF utilising an in-house generic Forties Palaeocene model in CMG's STARS simulator. The conventional approach of modelling LSWF using high and low salinity relative permeabilities is compared to the latest Multi-component Ion Exchange (MIE) methods by numerical simulation to assess the impact on incremental oil recovery. A sensitivity analysis is then carried out on the effects of specific parameters on incremental oil recovery, utilising published data from fields in the Forties Palaeocene fan system. A discussion is provided. The impact on secondary recovery was accessed with respect to wettability alteration; injection salinity (LSWF versus HSWF); oil viscosity and aquifer influx. The application of LSWF in secondary mode to the Forties Palaeocene Sandstones was found to be favourable for the case of mixed-wet reservoirs.

You can access this article if you purchase or spend a download.