Foams used for mobility control in CO2 flooding, and for more secure sequestration of anthropogenic CO2, can be stabilized with nanoparticles, instead of surfactants, bringing some important advantages. The solid nature of the nanoparticles in stabilized foams allows them to withstand the high-temperature reservoir conditions for extended periods of time. They also have more robust stability because of the large adsorption energy required to bring the nanoparticles to the bubble interface.

Silica nanoparticle-stabilized CO2-in-brine foams were generated by the co-injection of CO2 and aqueous nanoparticle dispersion through beadpacks, and through unfractured and fractured sandstone cores. Foam flow in rock matrix and fracture, both through Boise and Berea sandstones, was investigated. The apparent viscosity measured from foam flow in various porous media was also compared with that measured in a capillary tube, installed downstream of beadpacks and cores.

The domain of foam stability and the apparent foam viscosity in beadpacks was first investigated with focus on how the surface wettability of nanoparticles affects the foam generation. A variety of silica nanoparticles without any surface coating and with different coatings were tested, and the concept of hydrophilic/CO2-philic balance (HCB) was found to be very useful in designing surface coatings that provide foams with robust stability. Opaque, white CO2-in-water foams (bubble diameter < 100 µm) were generated with either polyethyleneglycol-coated silica or methylsilyl-modified silica nanoparticles with CO2 densities between 0.2 and 0.9 g/cc. The synergistic interactions at the surface of nanoparticles (bare colloidal silica) and surfactant (caprylamidopropyl betaine) in generating stable CO2 foams were also investigated.

The common and distinct requirements to generate stable CO2 foams with 5-nm silica nanoparticles, in rock matrices and in fractures, were characterized by running foam generation experiments in Boise and Berea sandstone cores. The threshold shear rates for foam generation in matrix and in fracture, both in Boise and Berea sandstones, were characterized. The ability of nanoparticles to generate foams only above a threshold shear rate is advantageous, because high shear rates are associated with high permeability zones and fractures. Reducing CO2 mobility in these zones with foam diverts CO2 into lower permeability regions that still contain unswept oil.

You can access this article if you purchase or spend a download.