Abstract
Completion designs for hydraulic stimulation of shale-gas reservoirs frequently accounts for vertical growth of the treatment volume in the formation. Where vertical growth is expected, wells are drilled near the base of the reservoir optimizing the distribution of proppant upwards. Other treatments may seek to transport treatment fluid across a lithologic barrier, effectively trying to "treat two formations for the price of one." Vertical growth needs to occur under controlled conditions, undesirable growth leads to a potential creation of pathways for treatment fluids to leak out of formation, or worse pathways allowing undesirable fluids to flow into formation. In either case, this could lead to a loss in optimization for production. To better understand vertical growth characteristics of hydraulic treatment volumes, microseismic monitoring arrays deployed downhole just above the formation provide a good discriminant for vertical growth of events. Further characterization of this growth can be accomplished through Seismic Moment Tensor Inversion (SMTI), when a sufficient angular distribution of multiple downhole arrays detects the microseismicity. SMTI can distinguish the source type of the mechanisms (e.g. openings, closures, shear, etc.) and the orientations of the activated structures, allowing for a more complete picture of the failure process. In the example provided, different stages of stimulation in the Marcellus shale formation are examined in the context of varying degrees of vertical growth. When vertical growth occurs, as identified through SMTI analysis, it appears to be related to the activation of sub-vertical natural joints whereas for vertically confined stages the primary fracture set is subhorizontal suggesting delamination of fissile bedding planes is the dominant process. These differences, from stages in the same completion program, suggest that subtle background stress changes can result in very different behaviors. Full understanding of these mechanisms will lead to further optimization of these treatment programs to promote vertical growth to traverse structural barriers and retain containment of the treatment within zone.