Abstract
Hole enlargement while drilling (HEWD) is an important technique in both deepwater and onshore drilling. Drilling interbedded formations is a difficult HEWD application. Two extreme cases can occur. One case is when the reamer drills in soft formation while the bit is in a harder formation. The other more difficult situation is when the reamer is in a hard formation while the bit drills ahead in soft formation. The latter creates an enormous challenge for the reamer to drill the harder formation without inducing large lateral and torsional vibrations which is detrimental to the reamer and other BHA components. An overall HEWD operating parameter management approach can greatly reduce probabilities of tool damage and unnecessary tripping while dramatically reducing drilling costs.
A state-of-the-art BHA dynamic analysis program that allows modeling the reamer and bit in different formations plays a vital role in the overall HEWD management process. Before any planned HEWD operation, various possible operating scenarios can be virtually simulated through the BHA dynamic analysis program to evaluate the effect on BHA components of lateral and torsional vibrations. An optimized BHA configuration can be specified through these analyses and a set of optimal operating parameters for the chosen BHA can be developed.
This paper presents an excellent case study of HEWD through severely depleted interbedded formations in the Gulf of Mexico. Previous offset wells had required multiple runs to HEWD this section due to reamer cutting structure damage. Models were constructed to compare performance with a range of BHA, WOB/WOR and RPM combinations. A set of optimal operating parameters and a road map were established for managing these parameters on the rig. Most importantly, the analyses recommended operating conditions that were substantially different from the accepted HEWD operation of increasing weight on bit (WOB) in harder formations. The analyses indicate that overall BHA performance was dramatically affected by weight on reamer (WOR). With a small sacrifice of ROP in the harder, more abrasive formations the HEWD system can effectively drill through the entire section without tripping due to component failure. This approach achieved excellent overall cost effective performance saving the operator $1.89 million on an offset well.