Many of the world's oil fields and aquifers are found in carbonate strata. Some of these formations contain vugs or cavities several centimeters in size. Flow of fluids through such rocks depends strongly upon the spatial distribution and connectivity of the vugs. Enhanced oil recovery processes such as enriched gas drives and groundwater remediation efforts like soil venting operations depend on the amount of hydrodynamic dispersion of such rocks. Selecting a representative scale to measure permeability and dispersivity in such rocks can be crucial because the connected vug lengths can be longer than typical core diameters.

Large touching vug (centimeter-scale), Cretaceous carbonate rocks from an exposed rudist (caprinid) reef buildup at the Pipe Creek Outcrop in Central Texas were studied at three different scales. Single-phase airflow and gas-tracer experiments were conducted on 2.5 in. diameter by 5 in. long cores (core-scale) and 5-to 10-ft-radius well tests (field-scale). Zhang et al.(2005) studied a 10 in. diameter by 14 in. high sample (bench-scale). Vertical permeability in the bench-scale varied from 100 darcies to 10 md and in the core-scale averaged 2.5 darcies. The field-scale permeability was estimated to be 500 md from steady state airflow and pressure transient tests.

In the bench and core scales a connected path of vugs dominates flow and tracer concentration breakthrough profile. Tracer transport showed immediate breakthrough times and a long tail in the tracer concentrations characterized by multiple plateaus in concentrations. Neither flow nor tracer transport can be explained at these scales by the standard continuum equations (Darcy's law or 1D convection dispersion equation). However, interpreting field-scale measurements with standard continuum equations suggested that a strongly connected path of vugs did not extend past a few feet. In particular, the tracer experiment in the field scale can be modeled accurately using an equivalent homogeneous porous medium with a dispersivity of 0.5 ft. In our measurements, permeability decreased with scale, while vug connectivity and multi-scale effects associated with vug connectivity decreased with increasing scale. We concluded that approximately 5 ft could be considered the representative scale for the large-touching-vug carbonate rocks at the Pipe Creek Outcrop.

You can access this article if you purchase or spend a download.