Abstract
Modern wireline formation testers (WFT's) are able to collect a massive amount of data at multiple depths, thus helping to quantify changes in rock and fluid properties along the wellbore, to define hydraulic flow units, and to understand the reservoir architecture. They are being routinely used in a wide range of applications that spans pressure and mobility profiling vs. depth, fluid sampling, downhole fluid analysis; interval pressure transient testing (IPTT), and micro fracturing. Due to the complex tool strings and the elaborate operational aspects involved in wireline formation testing, success requires detailed upfront planning and procedural design as well as real-time operational and interpretational support.
It is becoming increasingly critical for operating and service company experts to remotely monitor and interpret WFT surveys in real-time through web-based systems. The importance of meeting all rock and fluid data acquisition objectives cannot be overstated, given the high cost of offshore operations and the implications of obtaining false or misleading information. The main objective of real-time monitoring remains to assure that the planned data is acquired according to pre-established procedures and contingency plans. However, even in developed reservoirs, unexpected circumstances arise, requiring immediate response and modifications to the pre-planned job procedures. Unexpectedly low or high mobilities, probe plugging, unanticipated fluid types, presence of multiple phases, and excessive fluid contamination are but a few examples of such circumstances that would require real-time decision making and procedural modifications. Real-time decisions may include acquiring more pressure data points, extending sampling depths to several zones, extending or shortening sampling times, repeating micro-hydraulic fracture re-opening/closure cycles, as well as real-time permeability, composition, or anisotropy interpretation to determine optimum transient durations.
This paper describes several examples of formation tester surveys that have been remotely monitored in real-time to ensure that all WFT evaluation objectives are met. The power of real-time monitoring and interpretation will be illustrated through these case studies.