Abstract
The complex physics of multiphase flow in porous media are usually modeled at the field scale using Darcy-type formulations. The key descriptors of such models are the relative permeabilities to each of the flowing phases. It is well known that, whenever the fluid saturations undergo a cyclic process, relative permeabilities display hysteresis effects.
In this paper we investigate hysteresis in the relative permeability of the hydrocarbon phase in a two-phase system. We propose a new model of trapping and waterflood relative permeability, which is applicable for the entire range of rock wettability conditions. The proposed formulation overcomes some of the limitations of existing trapping and relative permeability models. The new model is validated by means of pore-network simulation of primary drainage and waterflooding. We study the dependence of trapped (residual) hydrocarbon saturation and waterflood relative permeability on several fluid/rock properties, most notably the wettability and the initial water saturation.
The relevance of relative permeability hysteresis is then evaluated for modeling geological CO2 sequestration processes. Here we concentrate on CO2 injection in saline aquifers. In this setting, the CO2 is the nonwetting phase, and trapping of the CO2 is an essential mechanism after the injection phase, during the lateral and upward migration of the CO2 plume. We demonstrate the importance of accounting for CO2 trapping in the relative permeability model for predicting the distribution and mobility of CO2 in the formation. We conclude that a proper treatment of the nonwetting phase trapping leads to a higher estimate of the amount of CO2 that it is safe to inject.