Abstract
This paper presents results from a laboratory study comparing capillary pressure measurement techniques for tight gas sands. Included in our evaluation are the more traditional high-speed centrifuge and high-pressure mercury injection methods as well as the less conventional high-pressure porous plate and vapor desorption techniques. The results of our study show significant differences between the mercury injection data and composite capillary pressure curves constructed with data from the other three methods. Consequently, we have concluded that high-pressure mercury injection can be used to quantify pore size distribution, but often inaccurately characterizes capillary pressures, particularly at the irreducible water saturation. Moreover, our study suggests that a composite capillary pressure curve constructed from a combination of the vapor desorption data for the low water saturation range and high-speed centrifuge or high-pressure porous plate data for the high saturation range provides the most accurate capillary pressures for tight gas sands.