The paper describes an integrated pore-to-field scale modeling method of multiphase flow in porous media. Although the method is general, we demonstrate its power and versatility by modeling a WAG process in the Etive formation in a North Sea oil field. The method aims at capturing the relevant flow physics at different scales. Pore scale physics (µm-scale) is accounted for through predictive pore scale modeling of relative permeability and capillary pressure. The computed rock curves (cm-scale) are used to populate detailed geological models with a plausible spatial distribution of constitutive relations. Effective flow properties at the heterogeneous facies scale (m-scale) are determined by a steady state upscaling technique. Finally, the effective flow properties are implemented in a field scale (km-scale) simulation model. The simulation results show that the effective flow properties describe the reservoir WAG performance fairly accurately without any adjustment through history matching.

You can access this article if you purchase or spend a download.