This paper presents detailed analyses of hydraulic fracture microseismicity and engineering data created during the joint operator Cotton Valley Hydraulic Fracture Imaging Project in East Texas. The project was a joint operator consortium with the goal of evaluating hydraulic fracture growth of conventional "sandfracs" and waterfracs with very low sand concentrations. A variety of fracture diagnostic tools were used on ten fracture stages in three wells including microseismic and downhole tiltmeter fracture mapping, fracture modeling, stress tests, radioactive tracers, pressure transient well tests, and production logging. We also introduce a methodology that uses full triaxial waveform analysis of the microseismic signals to obtain seismic source parameters, which characterize failure modes during hydraulic fracturing. This information could potentially be used for a detailed description of fracture geometry, growth and complexities and may give some indications about created versus propped fracture lengths. The paper compares the microseismic created lengths and propped lengths with those from frac models.

You can access this article if you purchase or spend a download.