Abstract
A second stage of gravity settling with the addition of demulsifiers or clarifiers is commonly used in processing plants to further treat the separated produced water. In previous work, we demonstrated gravity settling lower efficiency in removing oil carryover from produced water compared to other processing techniques. Both centrifugation and filtration were found to significantly improve the separated water quality. In this work, we focus on centrifugation and further evaluate its efficiency in improving the quality of separated water for both water and chemical floods, specifically surfactant/polymer (SP) flooding.
Samples were firstly prepared to imitate the separation plant projected feed and operations. Synthetic representative brines were prepared and used with dead crude oil to prepare the oil/water emulsions. Emulsion separation was conducted at different temperatures, as well as different concentrations of SP, and the demulsifier. The kinetics and efficiency of separation were thoroughly studied over two stages of separation: primary gravity settling and secondary centrifugation. We performed gravitational separation using bottle tests in order to firstly obtain the separated produced water for use in secondary water treatment studies and to secondly further investigate gravity settling kinetics and efficiency. Water quality, in terms of oil content, was then assessed through solvent extraction and UV analyses. Samples of the produced water separated by the primary gravity settling were then exposed to secondary centrifugation. Centrifugation was performed at different rotational speeds using a dispersion analyzer. Light transmission evolution in space and time was used to study kinetics, efficiency and mechanisms of secondary centrifugation.
The results reconfirmed that a single-stage gravity settling is not sufficient to reduce oil carryover to acceptable levels for disposal and re-injection into oilfields. Secondary centrifugation yielded clear and significant improvement in water quality even in the presence of EOR chemicals. With centrifugation, the separation efficiency was a function of the rotational speed. Higher rotational speeds resulted in higher creaming velocities and faster separation. In addition, creaming velocities indicated that higher temperatures yield favorable effects on oil droplets migration and separation rates. This is possibly due to the lower density and larger bouncy at higher temperatures.
Based on these results, we conclude that secondary centrifugation is very efficient and effective in improving the quality of separated water. In terms of the effects of investigated EOR formulations, SP addition caused minor but manageable reduction in separated water quality at a level that would not harm conventional disposal practices.