Abstract

The Dvalin gas field is located in the Norwegian sea on NCS and is operated by Wintershall DEA Norge. It is supported by two independent reservoir structures, Dvalin East and Dvalin West. The field was explored through wells 14S and 15S in 2010 and 2012, respectively. The field is characterized by dry gas, high CO2, high temperature (160 °C) and high pressure (SIWHP 620 bar). The targeted Garn sandstone has good reservoir quality, but with a high permeability contrast.

The field development was sanctioned in 2016 and calls for a 4 well solution through a centrally located subsea template, producing gas back to the host platform Heidrun TLP 15 km away. Water depth at location is 380 m and targeted reservoirs are at 4140 m MSL (East) and 4240 m MSL (West).

Production plateau rates are estimated to be approximately 106 MMscf/D (3 million std m3/d) per well where thin high-permeability zones within the Garn formation are expected to dominate the inflow. The lateral facies development is thought to be relatively homogenous throughout the field, thus S-shape wells falling off to vertical through the reservoir will ensure effective drainage.

Sand failure is expected after short time of production and would increase the risk of erosion causing severe damage to well jewelry and production facilities. It has been decided to integrate sand screens as a means of downhole sand control as part of the primary lower completion design. The sand screens will offer sand control, erosion resistance, hot spotting resistance as well as robustness towards a full hole collapse during reservoir pressure depletion. As the subsea completions are carried out from a mobile drilling unit in harsh environments, protection of the sand control filter media during installation is of utmost importance.

This paper will describe the selection process of sand control and qualification steps carried out to use ceramic screens as the stand-alone screen solution for successful deployment and integrity for the Dvalin field development

You do not currently have access to this content.