Abstract

Water-oil emulsion formation is commonly observed at wellhead chokes and topsides control valves, with the impact mitigated by chemical injection. The presence of emulsions downhole in Pyrenees wells was inferred from their significant production rate impact and confirmed by the uplift observed from downhole chemical injection. The Pyrenees fields are located in the Exmouth sub-basin offshore Western Australia. Through analogy between individual Inflow Control Device (ICD) orifice elements and wellhead chokes, ICDs were suspected as the source. This paper describes experimental confirmation of emulsion formation by orifice type inflow control devices in Pyrenees field horizontal well completions and proceeds to characterise the emulsions formed. A purpose built flow rig combined Pyrenees crude oil and produced water under low shear, simulating reservoir flow conditions, before flowing through an orifice element at rates equal to peak and mid-life production. With liquid flow rate held constant, water cut was increased in 10% steps from 0 to 100% water content. A key component of the experimental system is a benchtop Nuclear Magnetic Resonance spectrometer equipped for non-invasive Pulsed Field Gradient measurement of the Droplet Size Distribution of the emulsions formed. Droplet size distribution is a fundamental fluid property that significantly impacts emulsion rheology. The heavy end component of the crude oil was characterised by a novel Enhanced Saturate Aromatic Resin and Asphaltene analysis procedure to facilitate benchmarking of Pyrenees with emulsion formation tendencies of other producing assets. This quantitative demonstration of emulsion formation by orifice type ICDs at near reservoir conditions is novel, as is observation of partial emulsification, and represents initial steps towards generalisation of models for emulsion formation and their transport properties.

You can access this article if you purchase or spend a download.