Abstract
This paper describes an efficient approach to evaluate waterflood connectivity performance in complex compartmentalized reservoir, the objectives are to increase the oil production performance and manage mature fields effectively, and also to enhance ultimate recovery in the long run. It is also very useful to get better understanding of detail reservoir characterization, reservoir internal architecture, reservoir distribution, pressure monitoring and subsequent water flood sweep pattern efficiency. Multi-disciplinary methods applied to maximizing all of data and create strong analysis. The first phase is deep sub-surface analysis in property distribution, simultaneous inversion, 4D time lapse seismic and sweep pattern analysis, those analysis have been done to get comprehensive interpretation of reservoir characterization and waterflood monitoring. The second phase is tracer injection, we implement tracer in several wells to ensure connectivity from injector to several producers are efficient and optimal. These methods were performed for several regions of this area which contains a large number of well, nearly 200 wells consist of vertical, deviated and horizontal wells. Reservoir distribution in Windri area interpreted as stacking channel with high sinuosity geometry. This reservoir consists of predominantly of marginal marine claystone interbedded with deltaic sandstones, thin limestone and coal. Bio-stratigraphic analysis from cores shows that the reservoir was deposited in estuarine setting, interrupted by a brief shallow marine incursion. Seismic amplitude mapping at the upper base Gita horizon reveals a system of meandering channels. Compartmentalised reservoir in Windri area divided into 5 sweep pattern to make analysis more detail and accurate. Each of compartment have different characteristic, this is the challenging part in Windri area. East of windri area channel divided into 4 channels and it shows the evolution and movement of the channel that can control the property distribution and reservoir connectivity. Group two shows good result from tracer injection and it is supporting the interpretation of reservoir distribution and characterization within the area. Integrated 4D time lapse seismic generate pressure monitoring movement from each of waterflood phase. The results of this integrated study implementation are excellent, the ineffective water injection pattern now become effective, there is no unavailing injection well, every pattern is connected and link to each other, so that we can achieve our goal to enhanced recovery factor from 16% to 20%. Reservoir characterization using multi-discipline method reduce uncertainty of heteroginity sand and fluid prediction. Integrated waterflood analysis has been implemented for prospect generation, production optimization and overcome pressure degredation in this area.